A Framework-Based Environment
for Object—Oriented
Scientific Codes!

Robert A. Ballance
Object Science Corp. &
The University of New Mexico
Anthony J. Giancola
Object Science Corp.
George F. Luger
Timothy J. Ross
The University of New Mexico

Abstract

Frameworks are reusable object-oriented designs for
domain-specific programs. In our estimation, frameworks
are the key to productivity and reuse. However, frame-
works Pequnre increased support from the programming
environment. A framework based environment must
include design aides and project browsers that can mediate
between the user and the framework. A framework-based
approach also places new requirements on conventional
tools such as compilers. This paper explores the impact of
object-oriented frameworks upon a programming environ-
ment, in the context of object-oriented finite element and
finite difference codes. The role of tools such as design
aides and project browsers are discussed, and the impact
of a framework-based approach upon compilers is exam-
ined. Examples are drawn from our prototype C++-based
environment.

"Work supported in part by the Air Force Phillips Labora-
tory under Contract F29601-91-C-0074 and by the Univer-
sity of New Mexico College of Engineering.

The authors may be contacted af Object Science Corp.,
1420 Carlisle Blvd., NE, Suite 202, Albuquerque, NM
87110. By email: Bob_Ballance @ObjectSci.com.

1.0 Frameworks

Object-oriented scientific programming aims to harness
the power of object-oriented design and representation to
the task of scientific computing, The goals of our work
are:

1. To provide useful computational tools to scientists and
engineers, so that they need not become programmers,

2. To enhance user productivity via component and
design reuse,

3. To support a spectrum of computer architectures,
including sequential, vector, and massnvely parallel
processors, and

4. To reclaim any computational costs introduced while
satxsfymg the first three goals by developing and apply-
ing new translation technology to the resulting pro-
grams,

Reusable designs, implemented as object-oriented
frameworks [14] [15] [18], are key to object-oriented sci-
entific programming. A framework describes the basic ele-
ments used to create a general soluuon But a framework
is not just a collection of design gundelmes or libraries; it
is an integrated collection of components and interfaces
that is designed to be easily extended into a working code.
By choosing among various particular components, and by

1of12

" Proceedings of the First Annual Object-Oriented Numerics Conference, April 1993

tailoring components to the exact problem at hand, a user
can adapt a framework to yield the desired computation.

Framework-based programming is a logical extension of
object-oriented programming. Quite often, a developer
needs only to tailor an existing component by adding new
functionality, or by modifying existing behavior. Object-
oriented languages support this activity by providing ways
to incrementally layer new behavior onto existing compo-
nents. Adding the new behavior derives a new kind of
component while the existing components are not
changed.

The end user of an object-oriented framework is princi-
pally involved in specializing existing class elements to
provide new or refined behavior, Thus the dominant use of
inheritance in a framework is to support specialization of.
classes.This usage leads to wide spread use of inheritance,
“fat” interfaces (28] and dynamic function dispatches.

In providing design reusability, frameworks offer

¢ adesign structure for develbping reusable components,

© a unit of transportability among diverse computer
architectures, and

¢ a semantic structure for developing framework-cogni-
zant tools.

Reusability of Components Designing reusable compo-
nents is difficult. First, a reusable component is necessarily
general. When an already-developed module is to be made
reusable, the designer's hardest task is to decide how the
module should be generalized. Second, components are
never used in isolation, but are combined with other com-
ponents. Without considering the desired forms of interac-
tion, a reusable component might not be, in fact, usable
when combined with other components. A design frame-
work provides the guidelines needed to solve these prob-
lems. Since the framework itself is general, the framework
implicitly determines those ways in which a component
must be general. Since the framework specifies the neces-
sary interactions among its components, the framework
explicitly determines the various interactions among com-
ponents that must be supported.

Adoption of a common set of frameworks also creates the
opportunity to exchange components of codes, as in the
object-component industry now arising in general pro-
gramming. Since the components will work with the com-
mon framework, they will automatically work together.
These features make it possible to develop new codes rap-

idly, to modify existing codes readily, and to reuse codes
in a matter of hours or days.

Transportability Because frameworks provide domain-
specific abstractions, frameworks provide a natural struc-
ture for moving codes among architectures. A framework
should be architecture independent, but may be re-imple-
mented using different library components for different
architectures. In effect, the framework stays the same
while implementation details differ.

Four levels of transportability are evident in a framework
based environment. Language translators provide the first
level; by compiling and optimizing for different architec-
tures, programs can occasionally be ported without
change. Component definitions provide the second level of
transportability: different implementations of matrices, for
example, might be targeted for different architectures. The
supporting code in the framework provides a third level.
At this level, the choices made by a designer will still hold,
but an alternative implementation of the frameworle itself
may be useful. At the fourth level, the user may choose to
revise prior implementation choices to derive a new pro-
gram from the framework. For example the user might
choose to move from an implicit to an explicit solution
method using framework-cognizant tools to replay and
revise an earlier design.

Framework-cognizant tools Frameworks provide a
meaningful and useful structure for developing support
tools. Experience with language-based “intelligent” pro-
gram editors, such as the Pan system [4], indicates that
attempting to provide extensive support at the level of a
programming language is probably inappropriate; even the
forms of global information available to a user are limited
to artifacts of programming [30]. For example, a language-
based environment can often provide an answer to the
question “What functions call function A?” Without
design-specific knowledge, however, they cannot answer
the question “Why is function A called?” Frameworks,
with distinct operational components and definable inter-
actions, provide a higher-level “pattern language” to
which a useful design semantics can be applied. The con-
nections among components can be annotated with seman-
tic information, and the choices of made by a user can be
traced and gathered into a design rational. It is at the
framework or design level that intelligent tools be inte-
grated.

20f12

Frameworks

Proceedings of the First Annual Object-Oriented Numerics Conference, April 1993

NumericCode
Manages one or

more
Comptrtations

T e -
. ~ =~
P . + ~N
Computation N, .
np < Compuhtkm N
;. Controller BRI ./ Controller -,
M ~
. \ .
\ ace . & a
- Sp. \ R Space \
> / \ \ N / \ \
\ N .
“ Input Quantum ! \.\ Input Quantum |
. / R '
S Output L, \ . Output ’
S, . RN 4
o X / ~ -
l ibnn'..-
Mathematics, ice, Material, /O

Figure 1 Overview of Framework

2.0 Example: The Computation-Space-
Quantum-Controller Framework

A framework provides a way to reuse designs: in our case
methods for solving scientific problems [24] [25][26). In
this section, we provide a brief introduction to the Compu-
tation-Space-Quantum-Coatroller framework for finite-
element and finite-difference codes.

Figure 1 shows a high-level overview of the framework.
As shown in the figure, each numerical code consists of
one or more Computations. Each Computation provides
the data and the solution for a single problem. Within a
computation is a Controller and a Computational Space.
The Computational Space (or “Space”) is where the actual
computation takes place; the Controller is an object that
starts (and continues) the computation by sending mes-
sages to the Space. The effect is to move the outer loop of
a numeric computation into the Controller. Since Spaces
contain the data being manipulated, they are responsible
for managing their own input and output.

Within Computations, there are several interlocking and
mutually dependent classes: LoopControl, Controller,
ObjectHavingState, Space, and Quantum. Each of these is
an abstract base class. Figure 2 illustrates the derivation
hierarchy for these core classes. Multiple inheritance is
used to enforce two restrictions: that a Space support the
same control interface as a LoopControl, and that a Space
and a Quantum share the properties commeon to
ObjectHavingState. A Space can also contain objects

Loop Object
Control Having
State
IS-A IS-A 18-A IS-A
L - N_/
Controlier - Space Quantum

Figure 2 Derivation Hierarchy for Core Classes
derived from ObjectHavingState.vThus Spaces can contain
embedded subspaces as well as Quanta.

Each of the core classes plays a single role in the code: a
LoopControl provides the switches and dials for control-
ling iteration and checkpointing. ObjectHavingState is the
basic container for data and scientific behavior. Class
Quantum is primarily a computational element. The Space
is an abstraction that provides both data and control.
Finally, the Computation class provides the stage for the
other players. '

The ownership relationships (HAS-A) among the core
classes are shown in Figure 3. Comparison Figures 2 and 3
show that a space both ISA and HAS ObjectHavingState.
The ability of a Space to contain objects that are also
Spaces provides much of the flexibility in the framework.
Spaces may organize their subcomponents by means of an
abstract supporting class called a Neighborhood. Concep-
tually, the Space manipulates many instances of objects
which are derived from ObjectHavingState, and many
instances of Neighborhoods. In practice, a Space may be

Example: The Computation-Space-Quantum-Controller Framework 3of12

ObjeciHavingSiste
HAS & e
Conirodlar Space 1A -
\1—;]’
Figure 3 Key ownership relations

able to minimize the actual number of instances by repre-
senting them implicitly, or by carefully managing a few
prototypical instances. An example of the latter case is
when a variant of a Neighborhood is used to represent an
element in a finite element code; in many cases it is more
efficient to swap Quanta representing nodes in and out of a
single prototypical Element than to create one instance of
an Element for each element appearing in the model.

Why the distinction between Space and Quantum? In our
model, a Space glues a number of ObjectHavingState
objects (typically Quanta) together. Within the Space, the
Quanta may be represented explicitly as objects; implicitly
by storing only their data fields; or as virtual Quanta in
which the internal representation may not be visible, but
the Quanta appear to be explicitly represented. There is
only a tenuous connection between explicitly represented
Quanta and explicit codes; the framework allows an
explicit code to be written using either implicit or virtual
Quanta, but the use of explicit Quanta generally indicates
the use of an explicit solution method.

3.0 Supporting Frameworks in a
Programming Environment

Effective use of design frameworks and object-oriented
development requires an innovative development environ-
ment. The tools in the environment must understand and
respond to the underlying framework and programming
techniques, as well as the programming language itself.
Such tools include design aides that assist a user to elabo-
rate a framework into a working code, browsers that allow
a user to manage libraries of components, and compilers
that directly support the framework-based approach.

Figure 4 illustrates the overall architecture of a frame-
work-based environment. As expected, the frameworks
themselves play a central role. The essential tools include
a design aide that mediates between users and the frame-
Wwork, a project browser that simplifies access to the code-
level aspects of an application, and a translator (or com-
piler) that is tuned for compiling the resulting programs.
The data managed by the environment include the frame-

An env:ronment for framework-based
programming

Figure 4

works themselves, the libraries of components, the config-
ured programs, and records of the choices made by a user
in elaborating her programs. The latter is denoted by the
“User’s Notebooks” in Figure 3. The next sections discuss
the role of the design aide and the translator in more detail.

While our experience to date is limited, we remain con-
vinced that frameworks also provide a structure for build-
ing truly knowledgeable tools. Prior experience with
language-based tools [4] [30] has shown that the program-
ming-language level is too low to provide the kinds of
assistance an end user can best use. Since a framework
provides a problem-solving approach that is domain-spe-
cific, it provides a natural structure for supporting high
level assistance. For example, while a framework may
support arbitrary combination of its elements, a frame-
work-cognizant design tool can provide many techniques
for guiding the user’s choice of components.

4.0 Design Aides and Project Browsers

A design aide is a sophisticated mechanism that helps the
user elaborate a framework into a complete program. The
design aide uses information accompanying the frame-
work, object, and class modules to assist the user. For
instance, a particular finite element code may make com-
mitments on boundary conditions. The design aide can
recognize this, using information about the methods and
class specifications of the objects and classes the user has
chosen. This will assist not only the sophisticated user in
designing complex codes quickly, but also remind the nov-
ice of the important parameters of the code building pro-
cess. In a simple sense the design aide can be seen as a
novice tutor, assisting the beginning numerical program-

40112

Supporiing Frameworks in a Programming Environment

Figure 5

mer in understanding the important aspects of the code he
or she is developing.

The design aide also assists the user by maintaining note-
books of designs for scientific codes. By replaying a
design from the notebook, a user can reconstruct (or mod-
ify) a previously implemented code. Finally, an intelligent
design aide, one augmented with rule-based expertise, can
help to guide a user in making her choices.

A screen dump of a prototype design aide for the Compu-
tation-Space-Quantum-Coatroller framework is shown in
Figure 5. This prototype allows a user to select and modify
components, either through the interface or through a
combination of the design aide and direct browsing. In the
illustration, our user has selected several components,
indicated by the filled-in selection wells. At this point, the
Quantum component has yet to be elaborated.

In Figure 6, the user has added instance variables and
equations to the quantum. The illustration shows both the
browser for equations and fields, and the inspector being
used to add a heat transfer equation. In this case, the user
has chosen to implement her equations directly in C++,
augmented by higher level operations supported by the
design aide. The notation “N.sum(temperature)” in the
equation will be translated into a special C++ iterator
function that sums the values of the “temperature”

instance variable over all of the neighbors of the Quantum,

Project browsers help users to inspect the objects, classes,
and inheritance relations in the environment. Unlike
design aides, which are oriented toward non-programmers,
project browsers allow programmers to view, extend, and
modify frameworks, libraries, and codes at the source code
level. Additionally, a project browser can exploit annota-
tions present in frameworks to provide enhanced function-
ality. .

Using the design aide to specialize a Computation

A key feature of a project browser is its ability to provide
integrated configuration management, By collecting infor-
mation about the entire program into a program repository,
the environment can better support both incremental com-
pilation and interprocedural optimization.

5.0 Language and Translator

The underlying object-oriented programming language
has several effects on the environment. First, it determines
Jjust what techniques can be used. For example, C++ sup-
ports multiple inheritance, making it easier to describe and
implement the Computation-Space-Quantum-Controller
framework presented above. Second, the language deter-
mines the degree of optimization that an environment can
provide. Third, the size and complexity of the language
has many implications for the ease with which an environ-
ment can be constructed, extended, and modified.

The presence of a translator that is fully integrated into an
environment allows other tools to use translator facilities
without replicating code. Reuse of translator components
occurs at two levels: by embedding calls to the translator
itself, and by linking directly to phases and other facets of
the translator. For example, the design aide must avail
itself of the analysis phases of the translator in order to
better support the user. These phases, and their results,
must be sharable within the environment. Similarly, the
class and project browsers require information derivable
from the source modules.

5.1 Language: C++

C++ is an evolving object-oriented language based on

C [34]. C++ differs from C by adding classes, inheritance,
user-defined overloaded operators, dynamic function bind-
ing, reference variables, and run-time exceptions. Opti-

Language and Translstor

50f12

I This Is the haat transfer
| equetion that will be used to

Figure 6 Elaborating a Quantum component
mizing (and vectorizing) C++ requires a combination of
techniques drawn from both conventional high-quality C
compilers as well as from optimizers for object-oriented
languages [11]. As with any new technology, existing
techniques can be extended to handle new situations.
However, besides extending the known to handle the
novel, new techniques are emerging. In particular, tech-
niques now being developed in program annotation and
partial evaluation show promise of more effective optimi-
zation strategies.

Table 1 briefly enumerates some of the features of C-++
and their impact upon compiling frameworks. In the table,
a “+” denotes a feature helpful to an optimizer and a “-”
denotes a feature detrimental to optimization,

Locality of reference assists an optimizing compiler, since
locality makes it more likely for a compiler to be able to
determine the effect of operations. Classes help the opti-
mizer since they support fine-grained encapsulation. On
the other hand, classes can complicate the work since
classes tend to proliferate scopes. Similarly, member func-
tions operate in encapsulated spaces, but tend to be numer-
ous and small. While small functions are “good”

new_temperaiure = termperature +
lambda * (N.sum(temperature) - DIM_2X * temperature)

C++ Facility Impact on Optimization
Classes * Proliferation of scopes
Exceptions - Inhibits/complicates optimization
Member functions I Proliferation of functions
Overloaded operators | ~ Management of temporaries
References + Well-behaved pointers
Static members + Localization of global variables
Templates) * Proliferation of code
Virtual functions — Dynamic dispatch

TABLE 1. Impact of C++ features on optimization

programming practice, they present problems to optimiz-
ers which want larger sections of program text to work on.
One advantage of procedure integration (or “inlining”) is
that it exposes a larger range of code for an optimizer to
work on. Function calls also inhibit optimizations.

Templates have much the same effect as classes, but have
the additional benefit that different template instantiations
can be optimized in different ways. Consider a Matrix

template that can be instantiated using integers or doubles
as the elements in the matrix; the compiler will be able to

Goti2

Language and Translator

Proceedings of the First Annual Object-Oriented Numerics Conference, April 1993

generate better code since the integer and the double ver-
sions are distinct.

References and static members tend to help the optimizer
by allowing a programmer to better control encapsulation
and to better indicate the use of pointers. This contrasts
well with C, in which pointers are used to implement both
dynamic data structures and to effect call-by-reference.

Exceptions cause two difficulties. First, they may incur
either storage or execution time overhead when a try-block
(the block that specifies a possible handler) is entered.
Second, since an exception may cause control to leave a
block immediately after a function is called, the optimizer
cannot assume that coritrol will continue normally after a
call. In particular, the optimizer cannot leave values in
temporary memory (registers, in particular) unless it is
prepared to restore those values when an exception is
thrown. Fortunately, techniques exist to handle this prob-
lem.

Finally, overloaded operators and virtual function dispatch
make good coding and optimization more difficult. Over-
loaded operators are problematic since they give the pro-
grammer the appearance of being primitive operations
without giving the compiler sufficient information to man-
age their resources properly. Virtual function calls are
problematic since they complicate the call graph and can
hide possible optimization. Methods for dealing with both
overloading and virtual calls are discussed in the next sec-
tion.

5.2 Optimizing Object-Oriented Sclentific
Programs

A translator in a framework-based, object oriented, scien- ‘

tific code environment must provide a wide range of opti-
mization techniques to assure that the final programs
achieve necessary performance standards. The needed
optimizations include both the usual intraprocedural and

interprocedural techniques as well as new techniques spe-
cific to object-oriented programs.

Especially for framework-based scientific codes, interpro-
- cedural analysis is essential. To be completely effective,
interprocedural optimization demands full knowledge of
the entire program, not just a function, a file, or a class. On
the surface, this is contrary to the notion of object-oriented
programming as iterative enhancement, in which encapsu-
lation is used to hide the bulk of the details of the program
from the programmer. However, it is the translator that is
violating encapsulation boundaries, not the programmer.
Tools such as project browsers serve as useful intermediar-

ies between the user and the translator by assisting the user
in designating the actual configuration of the program and
by transferring that information to the translator. The end
result is that the user may not even be aware that she is
providing the compiler with the information needed to
complete interprocedural analysis.

Intraprocedural Optimization All of the usual intrapro-
cedural optimizations [1], such as strength-reduction, con-
stant folding, code motion, copy propagation, and
common subexpression elimination are needed for object
oriented codes. These techniques are not specific to object
oriented codes, and are presented in most textbooks that
cover optimization of imperative languages.

In C++, the ability to redefine operators encourages devel-
opers to create new concrete data types. A concrete data
type appears to be a primitive type: it can be declared,
assigned and passed as an argument just like a primitive
type [13]. For example, a C++ programmer is free to
define and use infix expressions such as

A=B+(A*C);
where A and B represent vectors, C is a matrix, and “+”
and “*” have user-defined meanings.

As presently defined, C++ does not provide sufficient
information about user-defined operators to the translator
to effect even common code improvements. Without extra-
linguistic information, a translator may not be able to
bring its full range of techniques to bear on the overloaded
operators. .

To a programmer, the appearance of the user-defined oper-
ators suggests that they will work “just like” the standard
operators. These appearances are deceiving, but nowhere
more than in the arena of resource management. It is well-
known that the management of temporary objects is a dif-
ficult problem in C++ class libraries [10} [17).

One method for assisting the translator is to provide anno-
tations on class and method definitions. Annotations, in
the form of compiler directives, are already used in many
C and C++ translators. Properly expressed, annotations
can provide control over optimization, can convey seman-
tic information to the compiler, can be portable, and do not
require language extension, ‘

One approach to annotations uses algebraic equations
together with cost estimates to express potential transfor-
mations. While not yet fully implemented, our goal is to
use the equations as rewrite rules in the same way that
other rewrite rules are applied in advanced compilers [23].

Language and Translator

Tofi12

Proceedings of the First Annual Object-Oriented Numaerics Conference, April 1993

Consider again the matrix expression

A=B+(A*C);
If the compiler can determine that A, B, and C do not
share storage, this code can be rewritten as

Ti=A*C

A=B+T1
Suppose that both a *= operator and a += operator are
defined. Given the rewrite rules A+B=B+4,
A+=B=A = A+B,and A*=B=A = A*B, an optimizer
can easily rewrite this code to

A*=C

A+=B
for a savings of at least 2 function calls in C++, and possi-
bly saving the creation and destruction of two temporary
values along with copying. Adding such rewrite rules
requires two mechanisms in a compiler: the ability to
attach annotations to symbols or other language elements,
and the ability to perform rule-directed rewrites. The trick,
then is to be able to detect when A, B, and C do not share
storage. This requires some form of interprocedural alias
analysis, along with information about storage manage-
ment.

Interprocedural Analysis The interprocedural analysis
and optimization techniques used for imperative lan-
guages, such as FORTRAN [2], are also needed for stati-
cally typed object-oriented languages like C++. Such
techniques include interprocedural alias analysis [21] [32],
constant prog)agation [31], data flow analysis [5] [27], sub-
script analysis for uncovering potential vectorization [3),
and control dependence analysis [5] [6] {16] for determin-
ing potential parallelization strategies.

As an example, consider a Vector class having operations
* and +, and consider the vector expression

A=B*C+D
The simplest translation of this code from C++ into C
results in several nested function calls:

Vector::operator=(A,

Vector::operator+(
Vector::operator*(B, C), D))

By linearizing and naming temporaries, a compiler can
easily achieve

Vector T1, T2

Ti=B*C

T2=T1+D

A=T2
Given a reasonable procedure integration (inlining) mech-
anism, the code can now be expanded to something resem-
bling

/l setup *

for (i = base1; i < size1; i++) { t1[i] = b{i] * ¢[i]; }
// set up +
for(j = base2; j < size2; j++) { t2[j] = t1[j] + d{j]; }
/] set up copy
for(k = base3; k < size2; k++) { a[k] = t2[k]; }
With interprocedural constant propagation, it may be pos-
sible to determine that base! = base2 = base3 and
sizel = size2 = size3. In this case, the loops can be
jammed: '
for (i = base1; i < size1; i++) {
t1{i} = bfi] * cfi];
t2[i] = t1[i] + d[i};
a(i] = t2(ij;

Straightforward transformation then yields a nicely vector-
izable loop using vector chaining. Again, this depends
upon the presence of adequate analysis: interprocedural
constant propagation to allow the loop jamming!, alias
analysis along with subscript analysis in the target com-
piler to detect that the loop is vectorizable.

5.3 Function Specialization

Framework-based programs make heavy use of virtual
(dynamic) function dispatch. It is a virtue of object-ori-
ented languages that.any specific object A can be used
wherever a more general object B can be used, so long as
A is derived from B. This virtue, of course, has a cost in
the form of virtual functions. Virtual functions have two
costs: they inhibit optimization and they incur cycles dur-
ing execution,

In a framework, most of the apparent classes are abstract;
they will be replaced by specific classes and objects quite
uniformly in the resulting code. For example, while a com-
ponent may be defined in terms of a Matrix object, the
final code might use only one specific class of matrices. In
this case, the virtnal function calls could be eliminated in
the optimized code in favor of direct calls to the class
being used.

Function call specialization [12] [22] is the elimination of
runtime procedure dispatch by determining at compile
time the actual function being invoked. Specialization
requires interprocedural type propagation, along with the
ability to examine the entire program being compiled.

1. Full interprocedural constant propagation is not essential to
this example; a compiler can generate multiple versions of the
overall procedure by dynamically testing the sizes, and if they
are all equal, executing the jammed and optimized loop.

8of 12

Language and Translator

Proceedings of the First Annual Object-Oriented Numerics Conference, April 1993

For example, consider a C-++ fragment in which the
doSomething member function is invoked on anObject.
anObject.doSomething()

The actual function invoked depends on the type of anOb-
ject: it may be inherited or it may be a member function
defined in some class derived from anObject's class. In the
presence of a virtual function, a basic translator will gener-
ate a dynamic procedure call that consults the table of
functions associated with anObject's class during execu-
tion. ’

However, whenever the actual class of the recipient (anOb-
ject in this case) can be determined at-compile time, the
dynamic call can be replaced by a static call. Better, by
determining the exact definition of doSomething, the
translator can integrate the body of doSomething directly
into the loop. Procedure integration may create new oppor-
tunities for improvement. Integrated configuration man-
agement also supports this optimization by providing
access to all of the sources needed for procedure integra-
tion, whether or not a programmer has specified the func-
tions to be “inline” using the nominal C++ directive.

Many C++ translators already generate direct calls to vir-
tual functions provided that the type of the recipient can be
derived locally. However, interprocedural type propaga-
tion will enable a compiler to fully deploy this optimiza-
tion. In its simplest form, type propagation is just a form
of constant propagation on type values.

Specialization does not require that only a single function
be invoked. For example, consider a code fragment in
which an iterator over a list of Shapes invokes member
functions on each individual shape.

for (p = firstShape; p != 0; p = p->nextinList()) {
p->resize(...);
p->move(...);
p->redraw(...);

Each iteration involves three dynamic function dispatches.
Now suppose that a variable p can refer to any of several
different classes derived from Shape. If the derived classes
are known at compile time (or even if only a subset is
known), a compiler can factor out the dynamic dispatch
and then use statically compiled calls:

for (p = firstShape; pl= 0; p = p->nextinList()) {
if (isASquare(p)) {
/I Call Square functions
Square::resize(p, ...);
Square:move(p, ...);
Square::redraw(p, ...);

} else if (isACircle(p)) {

} .
The details of run time type détermination are omitted. In
this case, the tests isA... can be generated by the compiler.
The proposed run-time type identification facility being
considered by the C++ standards committee also
sufficient [29].

Performing specialization effectively conflicts with the
separate compilation model embraced by C and C++, Ide-
ally, an optimizing compiler for C++ will have access to
all of the source code for an application. Full access to the
source code does fiot, however, compromise the object-
oriented programming model, When full access is unavail-
able, the compiler must fall back to conservative
assumptions and produce correct output.

5.4 Partlal Evaluation

Partial evaluation results from combining a (possibly
empty) subset of a program’s data with a program to pro-
duce a new, simpler, program [9]. In a sense, conventional
optimizations such as constant folding are just forms of
partial evaluation using an empty input data set.

Berlin [7] [8] has shown that partially evaluated scientific
codes can show significant speedups. While it is unclear
how to extrapolate these results from small Scheme pro-
grams to large scientific codes, the results are encouraging.

Koo and Sundaresh [19] have recently shown that partial
evaluation can be used to implement function call special-
ization. Their work is based on a high-level semantic
model, but the results confirm the following observation;
by using partial evaluation and by tracking the types of the
objects created, a system can determine the actual types of -
objects involved in virtual function calls. Thus, rather than
implementing a static analysis to propagate data types, the
system simply performs an abstract interpretation on the
program and tracks the results, Krishna [20] is currently
working on the general problem of partial evaluation in C
and C++ for scientific codes.

On its own, using partial evaluation would be too expen-
sive to apply to most programs. However, an optimizer can
use results from the partial evaluation to simplify other
optimization passes such as interprocedural constant prop-
agation. In the long term, partial evaluation may become
an important technique in optimizing large scientific codes
because many scientific codes operate on relatively fixed
data sets for which a partially evaluated program would be

appropriate.

Lenguage and Translator

9of 12

Proceedings of the First Annual Object-Oriented Numerics Conference, April 1993

6.0 Conclusion

This paper has presented a framework-based environment
for object-oriented scientific programming and has exam-
ined the impact of a framework-based approach upon pro-
gramming environments for object-oriented scientific
codes. The use of a framework simplifies the creation of
domain-specific, intelligent tools that can assist in the
elaboration of programs from the framework. These same
tools can be used to support project browsing and configu-
ration management. With integrated configuration man-
agement, the environment is able to provide the
interprocedural analysis needed to fully optimize scientific
and numerical programs. Finally, the paper has briefly
touched upon optimization of object-oriented codes,
including function specialization, partial evaluation, and
the need for interprocedural analyses.

7.0 Referénces

(1] A.V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley
Publishing Company, 1986.

{2] F. Allen, et. al, “An overview of the PTRAN analysis
system for multiprocessing,” Journal of Parallel and
Distributed Processing, 5(5),0October, 1988, pp. 617-
640.

{31 R. Allen and S. Johnson, “Compiling C for Vector-
ization, Parallelization, and Inline Expansion,” Proc.
ACM SIGPLAN '88 Conference on Programming
Language Design and Implementation, Atlanta, GA,
June 22-24, pp. 241-249.

[4] R. A, Ballance, S. L. Graham, and M. L. Van De
Vanter, “The Pan Language-Based Editing System,”
ACM Trans. on Software Engineering Methods 1(1),
January 1992, pp. 95-127.

[S] R A.Ballance and A B. Maccabe, “PDGs for the rest
of us,” Technical Report 92-10, Department of Com-
puter Science, University of New Mexico, Revised
October 1992.

[6] R.A. Ballance, A.B. Maccabe, and K.J. Ottenstein,
“The program dependence web: a representation sup-
porting control-, data-, and demand driven interpreta-
tion of imperative languages,” Proc. ACM SIGPLAN
'90 Conference on Programming Language Design
and Implementation, June 1990, pp. 257-270.

[7] A. Berlin, “Partial evaluation applied to numerical
computation”, Proc. 1990 ACM Conference on Lisp

and Functional Programming, Nice France, June 27—
29, 1990, pp. 139-160.

(8] A. Berlin and D. Wiese, “Compiling scientific code
using partial evaluation,” Computer, 23(12), Decem-
ber 1990, pp. 25-37.

(91 D. A. Bjomer, A. P. Ershov, and N. D. Jones, eds.
FPartial Evaluation and Mixed Computation, North-
Holland, Amsterdam, 1988.

(10] K.G. Budge, J. S. Perry, and A. C. Robinson, “High-
performance scientific computing using C++,” C+ +
Workshop Proceedings, USENIX Association, Port-
land, Oregon, August 10-13, 1992, pp. 121-150.

(11} C.Chambers, “The design and implementation of the
SELF Compiler, an optimizing compiler for object-
oriented programming languages,” Report number
STAN-CS-92-1420, Department of Computer Sci-
ence, Stanford University, March 1992,

[12] C. Chambers and D. Ungar, “Customization: opti-
-mizing compiler technology for SELF” Proc. ACM
SIGPLAN '89 Conference on Programming Lan-
guage Design and Implementation, Portland, OR.
June 21-23, pp. 146~160,

[13] J. O. Coplien, Advanced C++: Programming Styles
and Idioms, Addison Wesley, 1991,

(14] F. Dearle, “Designing portable application frame-
works for C++,” The C++ Journal, Summer 1990,
pp. 55-59.

[15] L.P. Deutsch, “Design Reuse and Frameworks in the
Smalltalk-80 System,” in Software Reusability: Vol-
ume II, Applications and Experience, T. . Bigger-
staff and A. J. Perlis, eds., ACM Press, 1989, pp. 57~
71.

[16] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The
program dependence graph and its use in optimiza-
tion,” ACM Trans. on Programming Languages, 9(3),
319-349, 1987.

(17] D. Forslund et al., “Experiences in writing a distrib-
uted particle simulation code in C++,” C++ Work-
shop Proceedings, USENIX Association, San
Francisco, CA, 1990,

(18] R. Johnson and R. Wirfs-Brock, “Object-Oriented
Frameworks,” Tutorial session, OOPSLA ‘91: Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications, October 6-11, 1991,
Phoenix, AZ.

[19] S. C. Koo and R, S. Sundaresh, “Compiling inherit-
ance using partial evaluation,” Proceedings of the

10 of 12

Concluglon

Proceedings of the First Annual Object-Oriented Numerics Conference, April 1993

Symposium on Partial Evaluation and Program
Manipulation PEPM '91, Yale University, New
Haven, CT, June 17-19, 1991, pp. 211-222.

[20] K. Krishna, “Program specialization via partial eval-
uation,” Dissertation Proposal, Department of Com-
puter Science, The University of New Mexico,
Albuquerque, New Mexico, July, 1992,

(211 W. Landi and B. Ryder, “A safe algorithm for inter-
procedural pointer aliasing,” Proc. ACM SIGPLAN
'92 Conference on Programming Language Design
and Implementation, June, 1992.

[22] D. Lea, “Customization in C++,” C++ Workshop .
Proceedings, USENIX Association, San Francisco,
CA, April 9-11, 1990, pp. 301-314.

[23] E. Pelegri-Llopart, “Rewrite systems, pattern match-
ing, and code generation,” Report number UCB/CSD
88/423, Computer Science Division, University of
California, Berkeley, June 1988,

[24] T.J. Ross, G. F. Luger, P. Morrow, and L. Wagner,
“Two paradigms for OOP models of scientific appli-
cations,” Proceedings of the ASCE 8th Conference on
Computing, Dallas, TX, June 7-9, 1992, pp. 535~
542.

[25] T.J. Ross, G. F. Luger, and L. Wagner, “Object Ori-
ented Programming for scientific codes: thoughts and
concepts,” ASCE Journal of Computing, Vol. 6, No.
4, pp. 480-496.

[26] T. J. Ross, G. F. Luger, and L. Wagnes, “Object Ori-
ented Programming for Scientific Codes.II; Exam-
ples in C++,” ASCE Journal of Computing, Vol. 6,
No. 4, pp. 497-514.

[27] B. G. Ryder and M., C. Paull, “Elimination algo-
rithms for data flow analysis,” ACM Compunng Sur-
veys, 18(3), September 1986, 277-316.

(28] B. Stroustrup, The C++ Programming Language,
Second ed., Addison Wesley, 1991,

[29] B. Stroustrup and D. Lenkov, “Runtime type identifi-
cation for C++,” C++ Report, March-April 1992,
pp. 32-42.

(30] M. L. Van De Vanter, R. A. Ballance, and S. L. Gra-
ham, “Coherent user interfaces for language-based
editing systems,” Int. J. Man-Machine Systems,
1992,

[31]1 M. N. Wegman and F. K. Zadeck, “Constant propa-
gation with conditional branches,” ACM Trans. on

Programming Languages and Systems, 13(2), April,

1991, pp. 181-210.

[32] W. E. Weihl, “Interprocedural Data Flow Analysis in
the presence of pointers, procedure variables and
label variables,” Seventh Annual ACM Symp. on
Principles of Programming Languages, 1980, Pp.
83-94,

{33] D.1 Weise, “Graphs as an intermediate representation
for partial evaluation,” Stanford University, CSL-TR-
90-421, Stanford, CA,1990,

[34] X3J16, Working Paper for Draft Proposed Interna.
‘tional Standard for Information Systems—Program-

ming Language C++, The American National
Standards Institute, CBEMA, Washington, DC,

References

i1ot12

For further information contact:

Robert A. Ballance, Ph.D.
Object Science Corporation
1420 Carlisle Blvd, NE #202
Albuquerque, NM 87110

Phone: (505) 268-8982
Fax: (505) 242-8656

Internet: Bob_Ballance @ ObjectSci.Com

